网上有关“弦切角定理能反着用吗?”话题很是火热,小编也是针对弦切角定理能反着用吗?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
可以,逆定理
定理:以三角形任意一条边为邻边,在三角形外部作一个角等于该边的对角,那么所作角的另一边与三角形外接圆相切,切点为所作角的顶点。
几何描述:设△ABP的外接圆为⊙O,在△ABP外部作∠BAC=∠BPA,则AC切⊙O于A。
注意定理的描述,所作角必须在三角形的外部,且该角与三角形有公共的边。
该定理的等价描述为:角的度数等于所夹弧所对圆周角的角为弦切角。
几何描述:设直线AC与圆相交于A,AB是圆的一条弦,P是圆上与A,B不重合的点。若∠BAC=∠BPA,则∠BAC是弦切角,即AC与圆相切于A。
证明:如图,同样分类讨论
(1)当∠BPA=90°时,AB为直径。
∠BAC=∠BPA=90°,即AB⊥AC
经过直径的一端,并且与直径垂直的直线是圆的切线,∴AC是⊙O的切线,切点为A。
(2)当∠BPA<90°时,作直径AD,连接PD,则∠DPA=90°
∵∠BAC=∠BPA,∠DAB=∠DPB
∴∠BAC+∠DAB=∠BPA+∠DPB
即∠DAC=∠DPA=90°
由(1)得AC与⊙O切于A
(3)当∠BPA>90°时,作直径AD,连接PD,则∠DPA=90°
∵∠BAC=∠BPA,∠BAD=∠BPD
∴∠BAC-∠BAD=∠BPA-∠BPD
即∠DAC=∠DPA=90°
由(1)得AC切⊙O于A
扩展资料
弦切角定理
弦切角等于它所夹的弧所对的圆周角。
推论1:弦切角等于它所夹的弧所对的圆心角的一半。
推论2:两个弦切角所夹的弧相等,那么这两个弦切角也相等。
推论3:弦切角等于它所夹的弧的度数的一半。
弦切角定理的证明:
AB为圆O的切线,因为BD是直径,所以内接三角形BCD是直角三角形,其中∠DCB是直角
所以∠BDC+∠1=90°
又因为∠1 +∠CBA=90°
所以∠CBA=∠BDC.
百度百科-弦切角定理
百度百科-弦切角
关于“弦切角定理能反着用吗?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[稳坐江山]投稿,不代表米乐号立场,如若转载,请注明出处:http://www.milekids.com/ds/1216.html
评论列表(4条)
我是米乐号的签约作者“稳坐江山”!
希望本篇文章《弦切角定理能反着用吗?》能对你有所帮助!
本站[米乐号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:网上有关“弦切角定理能反着用吗?”话题很是火热,小编也是针对弦切角定理能反着用吗?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。可以,...