对于0到π上积分,可以拆成0到π/2和π/2到π两个积分区间,π/2到π上注意到令x=π-t可以使此积分化为0到π/2上的积分,于是第一个式子成立。利用此方法其余式子也可以证出来。其中0到2π时两者应该相同,n为奇数均为0,偶数为4倍。
推广公式 当 m =1 m=1 m=1 时,该公式退化为原华里士公式,Wallis(华里士)公式是关于圆周率的无穷乘积的公式,但Wallis公式中只有乘除运算,连开方都不需要,形式上十分简单。虽然Wallis公式对π的近似计算没有直接影响,但是在导出Stirling公式中起到了重要作用。
关于(sinx)^n 从0到pi/2的定积分有个公式叫Wallis公式,也叫华莱士公式。Wallis公式是关于圆周率的无穷乘积的公式,但Wallis公式中只有乘除运算,连开方都不需要,形式上十分简单。虽然Wallis公式对π的近似计算没有直接影响,但是在导出Stirling公式中起到了重要作用。
在考研数学中,计算量的考察是考研数学中的重要考点,对于一些题目会出现计算量比较大,要求短时间内计算准确,所以对于一些小的计算技巧,需要掌握,这样可以大大加快计算速度,提高计算准确度。然而华莱士公式就是一较典型的这种算法。
Wallis公式Wallis(华里士)公式
Wallis公式是关于圆周率的无穷乘积的公式,公式内容如下:
lim(n→∞)(n!)?2?/(2n)!√n=√π
Wallis(华里士)公式是关于圆周率的无穷乘积的公式,但Wallis公式中只有乘除运算,连开方都不需要,形式上十分简单。虽然Wallis公式对π的近似计算没有直接影响,但是在导出Stirling公式中起到了重要作用。
本文来自作者[千兴敏]投稿,不代表米乐号立场,如若转载,请注明出处:http://www.milekids.com/ds/2511.html
评论列表(4条)
我是米乐号的签约作者“千兴敏”!
希望本篇文章《华里士公式推广到0-2π》能对你有所帮助!
本站[米乐号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:对于0到π上积分,可以拆成0到π/2和π/2到π两个积分区间,π/2到π上注意到令x=π-t可以使此积分化为0到π/2上的积分,于是第一个式子成立。利用此方法其余式子也可以证出...